3.825 \(\int \frac {\sqrt {\cos (c+d x)}}{(a+b \sec (c+d x))^2} \, dx\)

Optimal. Leaf size=184 \[ \frac {\left (2 a^2-3 b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d \left (a^2-b^2\right )}+\frac {b^2 \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \sec (c+d x))}-\frac {b \left (4 a^2-3 b^2\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^3 d \left (a^2-b^2\right )}+\frac {b^2 \left (5 a^2-3 b^2\right ) \Pi \left (\frac {2 a}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{a^3 d (a-b) (a+b)^2} \]

[Out]

(2*a^2-3*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/(a^2-b
^2)/d-b*(4*a^2-3*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a^
3/(a^2-b^2)/d+b^2*(5*a^2-3*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),
2*a/(a+b),2^(1/2))/a^3/(a-b)/(a+b)^2/d+b^2*sin(d*x+c)/a/(a^2-b^2)/d/(a+b*sec(d*x+c))/cos(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.48, antiderivative size = 184, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 9, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.391, Rules used = {4264, 3847, 4106, 3849, 2805, 3787, 3771, 2639, 2641} \[ -\frac {b \left (4 a^2-3 b^2\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^3 d \left (a^2-b^2\right )}+\frac {\left (2 a^2-3 b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d \left (a^2-b^2\right )}+\frac {b^2 \left (5 a^2-3 b^2\right ) \Pi \left (\frac {2 a}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{a^3 d (a-b) (a+b)^2}+\frac {b^2 \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \sec (c+d x))} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Cos[c + d*x]]/(a + b*Sec[c + d*x])^2,x]

[Out]

((2*a^2 - 3*b^2)*EllipticE[(c + d*x)/2, 2])/(a^2*(a^2 - b^2)*d) - (b*(4*a^2 - 3*b^2)*EllipticF[(c + d*x)/2, 2]
)/(a^3*(a^2 - b^2)*d) + (b^2*(5*a^2 - 3*b^2)*EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2])/(a^3*(a - b)*(a + b)^2
*d) + (b^2*Sin[c + d*x])/(a*(a^2 - b^2)*d*Sqrt[Cos[c + d*x]]*(a + b*Sec[c + d*x]))

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3787

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3847

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(b^2*C
ot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n)/(a*f*(m + 1)*(a^2 - b^2)), x] + Dist[1/(a*(m + 1)
*(a^2 - b^2)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*(a^2*(m + 1) - b^2*(m + n + 1) - a*b*(m + 1
)*Csc[e + f*x] + b^2*(m + n + 2)*Csc[e + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f, n}, x] && NeQ[a^2 - b^2, 0]
&& LtQ[m, -1] && IntegersQ[2*m, 2*n]

Rule 3849

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[d*Sqrt[d*S
in[e + f*x]]*Sqrt[d*Csc[e + f*x]], Int[1/(Sqrt[d*Sin[e + f*x]]*(b + a*Sin[e + f*x])), x], x] /; FreeQ[{a, b, d
, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4106

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d
_.)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))), x_Symbol] :> Dist[(A*b^2 - a*b*B + a^2*C)/(a^2*d^2), Int[(d*Csc[
e + f*x])^(3/2)/(a + b*Csc[e + f*x]), x], x] + Dist[1/a^2, Int[(a*A - (A*b - a*B)*Csc[e + f*x])/Sqrt[d*Csc[e +
 f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0]

Rule 4264

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps

\begin {align*} \int \frac {\sqrt {\cos (c+d x)}}{(a+b \sec (c+d x))^2} \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\sec (c+d x)} (a+b \sec (c+d x))^2} \, dx\\ &=\frac {b^2 \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} (a+b \sec (c+d x))}-\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {-a^2+\frac {3 b^2}{2}+a b \sec (c+d x)-\frac {1}{2} b^2 \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+b \sec (c+d x))} \, dx}{a \left (a^2-b^2\right )}\\ &=\frac {b^2 \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} (a+b \sec (c+d x))}-\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {a \left (-a^2+\frac {3 b^2}{2}\right )-\left (-a^2 b+b \left (-a^2+\frac {3 b^2}{2}\right )\right ) \sec (c+d x)}{\sqrt {\sec (c+d x)}} \, dx}{a^3 \left (a^2-b^2\right )}+\frac {\left (b^2 \left (5-\frac {3 b^2}{a^2}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{a+b \sec (c+d x)} \, dx}{2 a \left (a^2-b^2\right )}\\ &=\frac {b^2 \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} (a+b \sec (c+d x))}+\frac {\left (b^2 \left (5 a^2-3 b^2\right )\right ) \int \frac {1}{\sqrt {\cos (c+d x)} (b+a \cos (c+d x))} \, dx}{2 a^3 \left (a^2-b^2\right )}+\frac {\left (\left (2 a^2-3 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx}{2 a^2 \left (a^2-b^2\right )}-\frac {\left (b \left (4 a^2-3 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\sec (c+d x)} \, dx}{2 a^3 \left (a^2-b^2\right )}\\ &=\frac {b^2 \left (5 a^2-3 b^2\right ) \Pi \left (\frac {2 a}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{a^3 (a-b) (a+b)^2 d}+\frac {b^2 \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} (a+b \sec (c+d x))}+\frac {\left (2 a^2-3 b^2\right ) \int \sqrt {\cos (c+d x)} \, dx}{2 a^2 \left (a^2-b^2\right )}-\frac {\left (b \left (4 a^2-3 b^2\right )\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{2 a^3 \left (a^2-b^2\right )}\\ &=\frac {\left (2 a^2-3 b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 \left (a^2-b^2\right ) d}-\frac {b \left (4 a^2-3 b^2\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^3 \left (a^2-b^2\right ) d}+\frac {b^2 \left (5 a^2-3 b^2\right ) \Pi \left (\frac {2 a}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{a^3 (a-b) (a+b)^2 d}+\frac {b^2 \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} (a+b \sec (c+d x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 2.08, size = 252, normalized size = 1.37 \[ \frac {\frac {4 b^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{\left (a^2-b^2\right ) (a \cos (c+d x)+b)}+\frac {\frac {2 \left (2 a^2-b^2\right ) \Pi \left (\frac {2 a}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{a+b}+\frac {2 \left (2 a^2-3 b^2\right ) \sin (c+d x) \left (\left (a^2-2 b^2\right ) \Pi \left (-\frac {a}{b};\left .\sin ^{-1}\left (\sqrt {\cos (c+d x)}\right )\right |-1\right )+2 b (a+b) F\left (\left .\sin ^{-1}\left (\sqrt {\cos (c+d x)}\right )\right |-1\right )-2 a b E\left (\left .\sin ^{-1}\left (\sqrt {\cos (c+d x)}\right )\right |-1\right )\right )}{a^2 b \sqrt {\sin ^2(c+d x)}}+8 b \left (\frac {b \Pi \left (\frac {2 a}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{a+b}-F\left (\left .\frac {1}{2} (c+d x)\right |2\right )\right )}{(a-b) (a+b)}}{4 a d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Cos[c + d*x]]/(a + b*Sec[c + d*x])^2,x]

[Out]

((4*b^2*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/((a^2 - b^2)*(b + a*Cos[c + d*x])) + ((2*(2*a^2 - b^2)*EllipticPi[(2*
a)/(a + b), (c + d*x)/2, 2])/(a + b) + 8*b*(-EllipticF[(c + d*x)/2, 2] + (b*EllipticPi[(2*a)/(a + b), (c + d*x
)/2, 2])/(a + b)) + (2*(2*a^2 - 3*b^2)*(-2*a*b*EllipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] + 2*b*(a + b)*Ellipti
cF[ArcSin[Sqrt[Cos[c + d*x]]], -1] + (a^2 - 2*b^2)*EllipticPi[-(a/b), ArcSin[Sqrt[Cos[c + d*x]]], -1])*Sin[c +
 d*x])/(a^2*b*Sqrt[Sin[c + d*x]^2]))/((a - b)*(a + b)))/(4*a*d)

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {\cos \left (d x + c\right )}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^2,x, algorithm="giac")

[Out]

integrate(sqrt(cos(d*x + c))/(b*sec(d*x + c) + a)^2, x)

________________________________________________________________________________________

maple [B]  time = 10.57, size = 809, normalized size = 4.40 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^2,x)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2/a^3/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)
^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(2*b*EllipticF(cos(1/2*d*x+1/2*c),2^(1
/2))+a*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))-6*b^2/a^2/(a^2-a*b)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x
+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2*a/(a-b
),2^(1/2))-2/a^3*b^3*(a^2/b/(a^2-b^2)*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/
(2*a*cos(1/2*d*x+1/2*c)^2-a+b)-1/2/(a+b)/b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*
sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+1/2*a/b/(a^2-b^2)*(sin(
1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)
*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-1/2*a/b/(a^2-b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2
+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-1/2/b/(a^
2-b^2)/(a^2-a*b)*a^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+s
in(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2*a/(a-b),2^(1/2))+3/2*b/(a^2-b^2)/(a^2-a*b)*a*(sin(1
/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*
EllipticPi(cos(1/2*d*x+1/2*c),2*a/(a-b),2^(1/2))))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {\cos \left (d x + c\right )}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate(sqrt(cos(d*x + c))/(b*sec(d*x + c) + a)^2, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\sqrt {\cos \left (c+d\,x\right )}}{{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^(1/2)/(a + b/cos(c + d*x))^2,x)

[Out]

int(cos(c + d*x)^(1/2)/(a + b/cos(c + d*x))^2, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {\cos {\left (c + d x \right )}}}{\left (a + b \sec {\left (c + d x \right )}\right )^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(1/2)/(a+b*sec(d*x+c))**2,x)

[Out]

Integral(sqrt(cos(c + d*x))/(a + b*sec(c + d*x))**2, x)

________________________________________________________________________________________